First-order versus second-order single-layer recurrent neural networks

نویسندگان

  • Mark W. Goudreau
  • C. Lee Giles
  • Srimat T. Chakradhar
  • D. Chen
چکیده

We examine the representational capabilities of first-order and second-order single-layer recurrent neural networks (SLRNN's) with hard-limiting neurons. We show that a second-order SLRNN is strictly more powerful than a first-order SLRNN. However, if the first-order SLRNN is augmented with output layers of feedforward neurons, it can implement any finite-state recognizer, but only if state-splitting is employed. When a state is split, it is divided into two equivalent states. The judicious use of state-splitting allows for efficient implementation of finite-state recognizers using augmented first-order SLRNN's.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Recurrent Neural Network Model for Solving Linear Semidefinite Programming

In this paper we solve a wide rang of Semidefinite Programming (SDP) Problem by using Recurrent Neural Networks (RNNs). SDP is an important numerical tool for analysis and synthesis in systems and control theory. First we reformulate the problem to a linear programming problem, second we reformulate it to a first order system of ordinary differential equations. Then a recurrent neural network...

متن کامل

بهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه

In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...

متن کامل

Evaluation of effects of operating parameters on combustible material recovery in coking coal flotation process using artificial neural networks

In this research work, the effects of flotation parameters on coking coal flotation combustible material recovery (CMR) were studied by the artificial neural networks (ANNs) method. The input parameters of the network were the pulp solid weight content, pH, collector dosage, frother dosage, conditioning time, flotation retention time, feed ash content, and rotor rotation speed. In order to sele...

متن کامل

A generalized LSTM-like training algorithm for second-order recurrent neural networks

The long short term memory (LSTM) is a second-order recurrent neural network architecture that excels at storing sequential short-term memories and retrieving them many time-steps later. LSTM's original training algorithm provides the important properties of spatial and temporal locality, which are missing from other training approaches, at the cost of limiting its applicability to a small set ...

متن کامل

Experimental Comparison of the Effect of Order in Recurrent Neural Networks

There has been much interest in increasing the computational power of neural networks. In addition there has been much interest in “designing” neural networks to better suit particular problems. Increasing the “order” of the connectivity of a neural network permits both. Though order has played a significant role in feedforward neural networks, it role in dynamically driven recurrent networks i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 5 3  شماره 

صفحات  -

تاریخ انتشار 1994